The Monoids of Order Eight and Nine
نویسندگان
چکیده
We describe the use of symbolic algebraic computation allied with AI search techniques, applied to the problem of the identification, enumeration and storage of all monoids of order 9 or less. Our approach is novel, using computer algebra to break symmetry and constraint satisfaction search to find candidate solutions. We present new results in algebraic combinatorics: up to isomorphism and anti-isomorphism, there are 858,977 monoids of order 8 and 1,844,075,697 monoids of order 9.
منابع مشابه
On Regularity of Acts
In this article we give a characterization of monoids for which torsion freeness, ((principal) weak, strong) flatness, equalizer flatness or Condition (E) of finitely generated and (mono) cyclic acts and Condition (P) of finitely generated and cyclic acts implies regularity. A characterization of monoids for which all (finitely generated, (mono) cyclic acts are regular will be given too. We als...
متن کاملOn the U-WPF Acts over Monoids
Valdis Laan in [5] introduced an extension of strong flatness which is called weak pullback flatness. In this paper we introduce a new property of acts over monoids, called U-WPF which is an extension of weak pullback flatness and give a classification of monoids by this property of their acts and also a classification of monoids when this property of acts implies others. We also show that regu...
متن کاملLeft I-quotients of band of right cancellative monoids
Let $Q$ be an inverse semigroup. A subsemigroup $S$ of $Q$ is a left I-order in $Q$ and $Q$ is a semigroup of left I-quotients of $S$ if every element $qin Q$ can be written as $q=a^{-1}b$ for some $a,bin S$. If we insist on $a$ and $b$ being $er$-related in $Q$, then we say that $S$ is straight in $Q$. We characterize semigroups which are left I-quotients of left regular bands of right cancell...
متن کاملOn Condition (G-PWP)
Laan in (Ph.D Thesis, Tartu. 1999) introduced the principal weak form of Condition $(P)$ as Condition $(PWP)$ and gave some characterization of monoids by this condition of their acts. In this paper first we introduce Condition (G-PWP), a generalization of Condition $(PWP)$ of acts over monoids and then will give a characterization of monoids when all right acts satisfy this condition. We also ...
متن کاملMonoids in the fundamental group . . .
We study monoids generated by Zariski-van Kampen generators in the 17 fundamental groups of the complement of logarithmic free divisors in C listed by Sekiguchi (Theorem 1). Five of them are Artin monoids and eight of them are free abelian monoids. The remaining four monoids are not Gaußian and, hence, are neither Garside nor Artin (Theorem 2). However, we introduce, similarly to Artin monoids,...
متن کامل